3.459 \(\int \sqrt {a-a \sin ^2(e+f x)} \tan (e+f x) \, dx\)

Optimal. Leaf size=19 \[ -\frac {\sqrt {a \cos ^2(e+f x)}}{f} \]

[Out]

-(a*cos(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {3176, 3205, 16, 32} \[ -\frac {\sqrt {a \cos ^2(e+f x)}}{f} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a - a*Sin[e + f*x]^2]*Tan[e + f*x],x]

[Out]

-(Sqrt[a*Cos[e + f*x]^2]/f)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rule 3176

Int[(u_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Int[ActivateTrig[u*(a*cos[e + f*x]^2)^p]
, x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0]

Rule 3205

Int[((b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = FreeFact
ors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[(x^((m - 1)/2)*(b*ff^(n/2)*x^(n/2))^p)/(1 - ff*x
)^((m + 1)/2), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2
]

Rubi steps

\begin {align*} \int \sqrt {a-a \sin ^2(e+f x)} \tan (e+f x) \, dx &=\int \sqrt {a \cos ^2(e+f x)} \tan (e+f x) \, dx\\ &=-\frac {\operatorname {Subst}\left (\int \frac {\sqrt {a x}}{x} \, dx,x,\cos ^2(e+f x)\right )}{2 f}\\ &=-\frac {a \operatorname {Subst}\left (\int \frac {1}{\sqrt {a x}} \, dx,x,\cos ^2(e+f x)\right )}{2 f}\\ &=-\frac {\sqrt {a \cos ^2(e+f x)}}{f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 19, normalized size = 1.00 \[ -\frac {\sqrt {a \cos ^2(e+f x)}}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a - a*Sin[e + f*x]^2]*Tan[e + f*x],x]

[Out]

-(Sqrt[a*Cos[e + f*x]^2]/f)

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 17, normalized size = 0.89 \[ -\frac {\sqrt {a \cos \left (f x + e\right )^{2}}}{f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sin(f*x+e)^2)^(1/2)*tan(f*x+e),x, algorithm="fricas")

[Out]

-sqrt(a*cos(f*x + e)^2)/f

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sin(f*x+e)^2)^(1/2)*tan(f*x+e),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)2/f*2*sqrt(a)/2*sign(tan((f*x+exp(1))/2)^4-1)/(tan((f*x+exp(1))/2)^2+1)

________________________________________________________________________________________

maple [A]  time = 0.17, size = 21, normalized size = 1.11 \[ -\frac {\sqrt {a -a \left (\sin ^{2}\left (f x +e \right )\right )}}{f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a-a*sin(f*x+e)^2)^(1/2)*tan(f*x+e),x)

[Out]

-1/f*(a-a*sin(f*x+e)^2)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 20, normalized size = 1.05 \[ -\frac {\sqrt {-a \sin \left (f x + e\right )^{2} + a}}{f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sin(f*x+e)^2)^(1/2)*tan(f*x+e),x, algorithm="maxima")

[Out]

-sqrt(-a*sin(f*x + e)^2 + a)/f

________________________________________________________________________________________

mupad [B]  time = 15.25, size = 20, normalized size = 1.05 \[ -\frac {\sqrt {a-a\,{\sin \left (e+f\,x\right )}^2}}{f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)*(a - a*sin(e + f*x)^2)^(1/2),x)

[Out]

-(a - a*sin(e + f*x)^2)^(1/2)/f

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {- a \left (\sin {\left (e + f x \right )} - 1\right ) \left (\sin {\left (e + f x \right )} + 1\right )} \tan {\left (e + f x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sin(f*x+e)**2)**(1/2)*tan(f*x+e),x)

[Out]

Integral(sqrt(-a*(sin(e + f*x) - 1)*(sin(e + f*x) + 1))*tan(e + f*x), x)

________________________________________________________________________________________